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Expert Visual Understanding1

"Where is seipin 
localized in the 

endoplasmic 
reticulum (ER)?"

"Which statement 
accurately 

describes the 
effect of BafA1 

treatment on p26 
signaling 

compared to the 
control?"

What is unusual about the result?

 Perception

Hypothesis generation2

"Which mechanism 
might explain why ASLV 
particles show signs of 

merging in a CryoEM 
image?"

"Which cell type's 
altered function might 
lead to the disruption 

observed in the 
histologic finding?"

Why does this happen in my experiment?
 Assessment

Experimental proposal3

"What experiment could 
you perform to test if 

CCNB1 protein levels 
relate to cell cycle stages 

in human A-431 cells?"

"What experimental 
change can increase

the likelihood of 
achieving a high-

resolution structure?"

How do I test my hypothesis?
Action

Figure 1. A scientific experimentation cycle that drives discovery: researchers analyze experiments, develop hypotheses, and design further
experiments to test their ideas - generating new data that sparks the next cycle. We release MicroVQA, a scientist-curated benchmark for
visual question answering (VQA) to test these reasoning capabilities. MicroVQA evaluates scientific reasoning in the context of biological
microscopy, with questions spanning expert visual understanding, hypothesis generation, and experimental proposal.

Abstract

Scientific research demands sophisticated reasoning over
multimodal data, a challenge especially prevalent in biol-
ogy. Despite recent advances in multimodal large language
models (MLLMs) for AI-assisted research, existing multi-
modal reasoning benchmarks target up to college-level dif-
ficulty, while research-level benchmarks emphasize lower-
level perception, falling short of the complex multimodal
reasoning needed for scientific discovery. To bridge this
gap, we introduce MicroVQA, a visual-question answer-
ing (VQA) benchmark designed to assess three reasoning
capabilities vital in research workflows: expert image un-
derstanding, hypothesis generation, and experiment pro-

posal. MicroVQA consists of 1,061 multiple-choice ques-
tions (MCQs) curated by biological experts across diverse
microscopy modalities, ensuring VQA samples represent
real scientific practice. We find that standard MCQ creation
methods do not properly test our targeted reasoning capa-
bilities, motivating a new two-stage pipeline: an optimized
LLM prompt structures question-answer pairs into MCQs;
then, an agent-based ‘RefineBot’ generates more challeng-
ing distractors. Benchmarking on state-of-the-art MLLMs
reveal a peak performance of 43%; models with smaller
LLMs only slightly underperform top models, suggesting
that language-based reasoning is less challenging than mul-
timodal reasoning; and tuning with scientific articles en-
hances performance. Expert analysis of chain-of-thought
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reasoning failures indicates that multimodal reasoning er-
rors are frequent, followed by knowledge errors and over-
generalization. These insights highlight the challenges
in multimodal scientific reasoning, showing MicroVQA is
a valuable resource advancing AI-driven biomedical re-
search. MicroVQA is available here.

1. Introduction
The transformative potential of AI in scientific discov-
ery lies in its ability to interpret and reason over com-
plex, multimodal data while integrating specialist domain
knowledge. Recently, multimodal large language models
(MLLMs) have demonstrated notable capabilities in data
comprehension, recall, and multi-step reasoning across var-
ious modalities on exam-style questions [1, 3, 6, 40, 57, 67].
This progress has generated enthusiasm for scientific AI
applications, ranging from multimodal chat AI assistants
[25, 58, 69, 78] to AI agents capable of orchestrating com-
plex experiments [10, 13, 21, 45]. However, while MLLMs
perform well on general exam tasks, they often lack the
specialized, contextual reasoning needed for real scientific
challenges, where tasks require advanced image-based rea-
soning, analysis, and hypothesis-driven experimentation.

In recent years, efforts to apply scientific MLLMs across
a range of domains have laid an essential groundwork. Ad-
vances have been achieved in image understanding [32, 34,
38, 41, 47], literature analysis [32, 38, 55, 63], and problem-
solving at school and early college levels [43, 71]. In ap-
plied settings, AI has facilitated scientific tasks in chemistry
for compound design [29], code-based analysis [52, 60],
and diagnostic pathology and radiology [42]. However,
there has been less progress on tasks requiring higher-order
reasoning in research-level settings. The gap is due in part
to a lack of multimodal benchmarks for scientific reasoning
– unlike college-level tasks where existing exams can form
benchmarks, research tasks require expert curation.

Microscopy provides a compelling use case for devel-
oping such a benchmark. It requires more than pattern
recognition or factual recall – it demands the ability to syn-
thesize visual information with experimental context, for-
mulate hypotheses, and propose experimental follow-ups.
To evaluate these advanced capabilities, we introduce Mi-
croVQA, a visual-question answering (VQA) benchmark
tailored for multimodal scientific reasoning. Grounded in
the real-world scientific practice of biological microscopy,
MicroVQA incorporates over 1,061 multiple-choice ques-
tions (MCQs) manually created by biological researchers
across diverse disciplines, with each question taking more
than 30 minutes to generate. Careful expert curation ensures
the benchmark is relevant to real scientific applications.

MicroVQA is designed to evaluate three key reasoning
tasks crucial to scientific inquiry: (1) expert image under-
standing – the ability to recognize scientifically relevant

features and integrate contextual information about sam-
ple preparation; (2) hypothesis generation – the formulation
of scientifically plausible explanations from experimental
data; and (3) experiment proposal – the ability to suggest
further experiments that could validate or refute hypothe-
ses. These capabilities align with the iterative cycles of
scientific research and demand both abductive reasoning –
inferring the best explanation from multiple possibilities –
and deductive reasoning – moving from general principles
to specific conclusions [67].

We found that generating MCQs from open-ended sci-
entific VQA samples posed unique challenges – standard
methods create distractors that are far too easy for MLLMs
to eliminate without truly testing multimodal knowledge
or reasoning. To ensure question quality and difficulty,
we developed a two-stage pipeline for MCQ generation:
first, an optimized LLM prompt structures question-answer
pairs into well-formed MCQs; then, a novel agent-based
‘RefineBot’ system increases question difficulty by gen-
erating more challenging distractors. This ensures that
MicroVQA’s MCQs better test true scientific capabilities,
rather than simple pattern recognition.

We benchmarked frontier MLLMs on MicroVQA, find-
ing that the best performers achieved a modest peak of 43%,
which shows a significant gap between current models and
expert-level scientific reasoning. The variation between
different MLLMs was small; notably, smaller LLMs only
slightly underperform their larger counterparts, suggesting
that the key challenge for our MCQs is not language-only
reasoning, but multimodal reasoning or knowledge. We
also find that finetuning MLLMs on scientific publications
improves MicroVQA performance. Finally, a group of
biomedical researchers perform a detailed qualitative analy-
sis into MLLM failure modes, uncovering three major fail-
ure modes: Expert perception is the most common, fol-
lowed by knowledge errors, and then overgeneralization er-
rors. This further supports that visual reasoning is a key
challenge in MicroVQA.

In summary, our contributions are as follows:
• We introduce MicroVQA, a benchmark for multimodal

reasoning in biological microscopy. We defined three key
tasks for scientific research – expert image understanding,
hypothesis generation, and experiment proposal. Then,
expert researchers curated 1,060 diverse VQA samples.

• We develop a novel two-stage MCQ generation pipeline
to address the challenge of creating rigorous and chal-
lenging MCQs from long-format scientific questions.

• We provide quantitative and qualitative benchmarking of
frontier MLLMs, highlighting areas for improvement.

2. Related work
MLLM reasoning benchmarks While perception fo-
cuses on identifying an image’s visual features, visual rea-
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soning further integrates prior knowledge to derive new
conclusions using logical inference strategies like deduc-
tion, induction, abduction, and analogical reasoning [67].
Reasoning in MLLMs has focused on image-language
VQA [20, 35, 43, 67, 71, 72]. The most prominent examples
are MMMU [71, 72], ScienceQA, [43] and MathVista [44].
While they do test reasoning, they are derived from exams
up to the college level, while our benchmark emphasizes
research-level difficulty. Other popular multimodal bench-
marks test commonsense inference [59, 74], spatial or rela-
tional awareness [27, 75] and integrating prior knowledge
[46]. Another line of work is visual abductive reasoning
[7, 24], or finding the most likely explanation for an obser-
vation from incomplete information; which relates closely
to the hypothesis generation in this work.

MLLMs in science The most related work considers mul-
timodal VQA in scientific or medical domains like mi-
croscopy images [41], biological images [47], medical im-
ages [23, 26], and chemical structure drawings [34]. Still,
they mostly test more straightforward perception and recog-
nition. Figure comprehension for scientific articles does re-
quire more reasoning with multimodal data [32, 36–38, 50];
however, the images here are curated for publication, and
the emphasis is on understanding content, rather than per-
forming practical tasks. On the other hand, our bench-
mark includes realistic experiment images and tests more
advanced reasoning like hypothesis generation and experi-
ment planning. Scientific tasks have received much more
attention in language-only LLMs [12, 17, 28, 32, 48, 51,
52, 56, 60, 66], with GPQA being a notable work tar-
geting PhD-level multi-step reasoning [51], but these ob-
viously neglect multimodal reasoning, which is important
to many scientific areas [21]. In terms of models, most
MLLMs in the biomedical domain are targeted at clinical
tasks [26, 33, 49, 54, 62, 76].

Multiple-choice question construction A challenge in
creating exams for education research and benchmarks in
machine learning is generating multiple-choice questions
with quality distractors [4, 22], commonly using LLM gen-
eration. While zero-shot distractor prompting works in
some cases [26], others perform few-shot prompting or
LLM-tuning with high-quality examples [8, 18, 19]. A re-
cent result highlighted by Cambrian-1 showed that many
recent VQA benchmarks are exploitable by language short-
cuts, with MLLMs having similar evaluation scores without
having access to the image [61]. A specific language-only
strategy known in VQA is the ‘language bias’ – models ig-
nore the image, and make guesses corresponding to which
MCQ option is statistically more likely under the pretrain-
ing set. In this work, we find that zero-shot MCQ generation
is inadequate, likely due to language shortcuts; we therefore

Table 1. MicroVQA benchmark attributes.

Dataset feature Value
Total questions 1,061
Multi-image questions 423
Avg. MCQ question length 66
Avg. MCQ answer length 15
Avg. raw question length 158
Avg. raw answer length 52
Unique image sets 255
Image Modalities Light, Fluoro, Electron
Image Scales Tissue, Cell, Subcell, Atomic
Organisms 31
Research areas 33
Expert question creators 12
Time to create 1 question 30-40 mins
Time to quality check 1 MCQ 5 mins

Expert Visual 
Understanding1 Hypothesis generation2 Experimental Proposal3

1.1 Compare image sets

1.2 Identify abnormalities

E.g., How is the mitochondrial 
morphology different in image 
1 vs image 2?

E.g., Are the nuclei 
unhealthy, and what about 
the shape tells you that?

2.1 Causal mechanisms

2.2 Functional implications

E.g., What gene dysregulation 
could lead to the observed 
cytoplasm shape?

E.g., Given the unexpected 
localization of the 
centrosome, what will be the 
impact on liver function?

3.1 Suggest new experiment

3.2 Address technical issues

E.g., What new experiment could I 
do to test if Gene Y is causing 
these problems?

E.g., The staining did not target my 
objective, and the SNR was low. 
How can I improve it?

MicroVQA taxonomy

Figure 2. MicroVQA taxonomy of sub-tasks.

develop a novel method to improve MCQ generation.

3. The MicroVQA Benchmark
Here, we present the MicroVQA benchmark for visual-
question-answering (VQA) which advances multimodal
scientific reasoning by tackling two major evaluation chal-
lenges. First, defining tasks is challenging because scien-
tific research encompasses many complex activities [25]
– we therefore define three important tasks important
to biomedical discovery. Second, VQA samples cannot
be readily sourced from existing exams or classification
datasets – we therefore assembled a team of biologists to
curate challenging reasoning problems. In Sec. 3.1, we pro-
vide an overview of the MicroVQA benchmark; Sec. 3.2
details the key tasks; and finally, Sec. 3 demonstrates that
MicroVQA is at the forefront of measuring research-level
reasoning in MLLMs. In the later Sec. 4, we describe our
approach for generating multiple-choice questions.

3.1. Overview of MicroVQA

MicroVQA is a comprehensive dataset of 1,061 VQA
triplets, manually curated by a team of expert biological re-
searchers from diverse fields, and key attributes are sum-
marized in Tab. 1. These expert-crafted questions test rea-
soning across three key tasks: expert understanding, hy-
pothesis generation, and experiment proposal, and we ad-
ditionally provide a taxonomy of sub-tasks in Sec. 3. The
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questions cover a broad spectrum, ranging from biological
issues, such as “What is unusual about the cell shape?” –
to technical imaging challenges like “Is this feature due to
low signal-to-noise ratio (SNR) or is it real?”. We provide
the ‘raw’ questions and answers written by experts, which
are often long and nuanced, along with converted multiple-
choice questions (MCQs) suitable for MLLM evaluation.

The images encompass the most common microscopy
modalities used in human biology: brightfield, fluores-
cence, and electron microscopy. The sample types span
the full range of microscopic scales – tissue, cellular, sub-
cellular, and atomic – and emphasize organisms relevant to
human biology and medically motivated tasks, namely hu-
man and mouse. Over 60% of the samples have multiple
images because comparison is essential in microscopy re-
search, and because multichannel fluorescence images can-
not be represented in standard RGB. All these attributes are
provided as metadata tags to facilitate deeper error analy-
sis, thereby enhancing MicroVQA’s value as a resource for
advancing AI capabilities in scientific research.

3.2. MicroVQA scientific reasoning tasks

To define specific reasoning tasks aimed at advancing
biomedical research, we established the following criteria:
(1) the tasks should use image-text inputs and text outputs
suitable for MLLMs, (2) they should require higher-order
reasoning beyond simple image processing, and (3) they
should emphasize core experimental activities such as ex-
perimentation, analysis, and action [25], rather than aux-
iliary tasks like literature review or writing. The tasks
were developed through interviews with nine co-author
PIs and postdocs specializing in microscopy research (Ap-
pendix D). We identified three essential capabilities that we
now introduce, with examples shown in Sec. 3.

Expert visual understanding After performing an exper-
iment, scientists must interpret data within its experimen-
tal context. In biological microscopy, this involves identi-
fying patterns like protein distributions or cell morpholo-
gies, while also assessing technical aspects such as artifacts
and noise levels. The task requires MLLMs to perform
anomaly detection and image comparison, going beyond
simple perception in two key ways: analysis must consider
sample preparation context, and expert knowledge is needed
to evaluate biological features and technical artifacts.

Hypothesis generation The next step is proposing mech-
anistic hypotheses to explain experimental data. For exam-
ple, when a drug treatment causes mitochondrial fragmen-
tation in cells, a hypothesis might be that the drug disrupted
calcium homeostasis, activating the DRP1 protein through
a multi-step pathway, leading to fragmentation. This re-
quires abductive reasoning [7, 15, 24, 67] as one must se-

lect from many possible hypotheses given incomplete in-
formation. The process demands the MLLM to integrate
relevant domain knowledge with experimental context and
visual features to reason about which hypothesis best ex-
plains the observations.

Experiment proposal The final step is designing exper-
iments to validate hypotheses. In microscopy, this often
involves selecting appropriate assays and controls, requir-
ing knowledge of suitable protocols and deductive reason-
ing about whether proposed experiments will provide ev-
idence for or against the hypothesis. This task also may
involve adjusting a particular experiment to address techni-
cal issues, like how to ensure a good signal-to-noise ratio,
and this requires both image understanding and knowledge
of protocols.

Table 2. Comparing scientific multimodal benchmarks close to
MicroVQA for in terms of reasoning level or difficulty beyond
college level. We show difficulty level, scientific domain, dataset
source, and size. Compared to others, MicroVQA either has
higher difficulty level, or it has higher reasoning level (which is
established in Fig. 3). Compared to others at the same reasoning
level, namely MMMU-Pro, it has similar size.

Benchmark
Difficulty

level Domain Source Size

MicroVQA research microscopy expert-curated 1,061
LabBench [32] research biology webQA 181
PathVQA [23] graduate pathology texbooks 16.3k

OmnimedVQA∗ [26] graduate medical classification
dataset

127.9k

Microbench [41] graduate microscopy classification
dataset

17.2k

MMMU [71] undergraduate general textbooks,
webQA

11k

MMMU Pro [72] undergraduate general MCQ dataset 1,730
Science QA [43] grade-school science exams 16.8k

3.3. Analysis of MicroVQA benchmark

Scientific discovery requires complex reasoning beyond ba-
sic perception and knowledge, and it requires expertise
beyond school-level education. Here we show that Mi-
croVQA addresses a gap that prior multimodal scientific
benchmarks do not test high level reasoning at research-
level difficulty.

To assess reasoning levels in MLLM benchmarks, we
use Bloom’s taxonomy [9], which hierarchically classifies
cognitive difficulty from recall to evaluation. We fine-tune
GPT-4o to classify Bloom’s taxonomy on related MLLM
benchmarks with results in Fig. 3; in Tab. 2 we addition-
ally show key attributes of the same benchmarks. Fig. 3
shows that benchmarks having research-level and graduate-
level difficulty are dominated by lower reasoning questions
(levels 1-2), while our MicroVQA has higher level reason-
ing (levels 3-4). This is not surprising since OmnimedVQA
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Question Distribution of Bloom's Levels Across Benchmarks

Bloom’s Levels

5 - Evaluation

4 - Analysis

3 - Application

2 - Comprehension

1 - Recall
E.g. In the image, two cells are connected by a red-

colored structure. What is this structure called?

E.g. Which experiment would confirm the localization
of the target protein to motile cilia in ependymal cells?

E.g. Which tissue sample appears healthier
betweeen the two images?

ScienceQA

MMMU

MMMU-Pro

LabBench

MicroBench 
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Figure 3. Composition of scientific MLLM benchmarks regarding
estimated Bloom’s taxonomy [9]. Higher levels are more cogni-
tively challenging. MicroVQA has more questions at higher levels
compared to other benchmarks, for example, MMMU [71] and
ScienceQA [43], while perception-driven medical benchmarks
like OmniMedVQA are at lower levels.

and MicroBench derive questions from prior classification
datasets, while our task definition and data collection ap-
proach does reflect high-level reasoning.

On the other hand, some benchmarks have higher
Bloom’s reasoning level closer to MicroVQA – MMMU,
MMMU-Pro, and Science-QA – but their difficulty level is
lower – undergraduate or grade-school. The most compa-
rable benchmark for reasoning is the undergraduate-level
MMMU-Pro, and its dataset size is 1,730 compared to our
1,061: this shows that for reasoning-intensive benchmarks,
sizes beyond 1,000 are very high.

4. MCQ generation process
Here we describe the complete MicroVQA curation process
for creating ‘raw’ VQA samples and mapping them to chal-
lenging multiple choice questions (MCQs), which is sum-
marized in Fig. 4.

4.1. Creation of raw VQA samples by experts

Expert Generation of Raw VQA Samples Creating
VQA triples suitable for research-level reasoning tasks is
time-consuming and requires expertise. We recruited 12 hu-
man experts to each create approximately 90 VQA samples,
taking about 30–40 minutes per sample. Each submission
included an image set, a question, a detailed response, and
contextual information like experimental context and mo-

tivation. They are raw VQA triples, (v0, q0, a0) – ‘raw’
means the question and answer can be much longer and
more detailed than typical VQA benchmarks. This allowed
expert annotators to include enough detail to match what is
a valuable input and response for an MLLM. Appendix E
shows materials that prompt question creators. The images
were sourced from the contributor’s own experiments, im-
age databases, or research papers published since 2024, and
all image licenses permit redistribution.

Quality Control We had three quality control criteria:
questions should be challenging and not solvable with
undergraduate-level knowledge; they should be aligned
with the defined tasks; and there should be diversity in im-
age content. Questions were reviewed against these criteria
for each contributor, and feedback was provided for further
VQA samples. These review rounds occurred after submit-
ting the first 10 questions, and the first 40 questions.

4.2. MCQ generation from raw VQA samples

To benchmark MLLMs, we transform raw expert-created
VQA samples to multiple-choice questions (MCQs). We
propose new methods for MCQ generation, which we first
motivate.

Motivation: naive MCQ generation is inadequate The
standard approach for VQA benchmarks is to zero-shot
prompt an LLM with raw VQA samples [4], but this has
two problems. The first is that generated MCQs do not
follow established educational MCQ design principles (Ap-
pendix E.2), likely because the raw VQA questions and an-
swers are often long and variable. Our stage 1 ‘exam align-
ment’, which we describe in the next section, addresses this
challenge. The second challenge is that generated MCQs
do not properly test MLLM capabilities. Evaluating GPT-
4o on these MCQs scores 93% even without the image, de-
spite most of the dataset questions clearly requiring image
analysis, and we investigate this by inspecting the chain-
of-thought outputs in Fig. 4 and Appendix E.2. Many dis-
tractors can be easily eliminated based on general biology
knowledge, or because they are too vague compared to the
correct option. We hypothesize that MCQ and distractor
generation is challenging when the target answer string is
long, and where the subject matter is specialized, suggest-
ing that other scientific benchmarks may encounter similar
issues. Overall, this motivates a more involved approach to
distractor generation.

Stage 1: Exam-style MCQ Generation Here we ensured
that multiple-choice questions (MCQs) conformed to estab-
lished design principles for biomedical exams (Fig. 4). This
effort was led by a physician-scientist co-author trained
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Question:
“A fluorescence microscopy image showing eukaryotic 
cells with a target protein highlighted in the green 
channel was reviewed. From the visual data, what can 
be inferred about the localization and expression levels 
of the protein within these cells?

A) The target protein is primarily observed in the nuclear 
region with limited cytoplasmic presence, with 
fluctuations in expression between cells.
B) The protein exhibits predominant localization across 
the cell surface, maintaining uniform intensity in all cells.
C) A notable cytoplasmic accumulation of the protein 
with consistent signal levels is observed across all cells.
D) The protein is detected evenly throughout both the 
cytoplasm and nucleus but shows significant variability 
in the cellular signal intensity.
E) The fluorescence strongly indicates localization in the 
cytoplasmic matrix, with a concurrent uniformity in 
expression intensity among the observed cells.
Correct answer: A

Review and feedback

Raw VQA creation0 Exam-style MCQ generation

Define taxonomy with experts

1 Agent-based MCQ refinement2

Question collection

Estimated expert time: ~600 h

ContextGold
standard Generated

Metrics

Supervised prompt optimization (DSPy)

Gold
standard Optimized 

prompt

Rewriter

Checker

Evaluator 
+ Reflector

Feedback

Easy
Hard

Question:
“A fluorescence microscopy image of  SiHa cells incubated 
with an antibody against a target protein (green channel) 
was analyzed. Based on the image, what can be inferred 
about the subcellular localization and expression levels of 
the target protein?

A) The target protein is exclusively localized in the nucleus 
with uniform expression across all cells.
B) The target protein is predominantly expressed in the 
cytoplasm with variable expression levels across cells.
C) The target protein is mainly expressed in the nucleus 
and less in the cytoplasm, with single-cell variation.
D) The target protein is evenly distributed throughout the 
cell with consistent expression levels in all cells.
Correct answer: C

Raw dataset

Raw question

Question:
The image shows SiHa cells that have 
been incubated with an antibody 
against a target protein (green channel) 
and imaged using fluorescence 
microscopy. What can you tell about 
the subcellular location and expression 
levels of the target protein based on 
this image?
Answer:
“The target protein is mainly expressed 
in the nucleus, and to a lesser degree, 
the cytoplasm. Its expression appears 
to differ between the cells, as there is 
single-cell variation in the signal 
intensity both in the nucleus and 
cytosol.

MCQ stage 1 MCQ stage 2

Expert review

Exam-style 
refinement

+

Optimized prompt
Raw dataset MCQ1

MCQ {1,1*}
MCQ2

MCQ1*

Long 
answer

Hard distractor: 
plausible and subtlePreserves QA objective

Easy distractor: 
too vague

Removes  
unnecessary 

detail

RefineBot

Hard distractor

Underspecified 
compared to answer

Justification 
to answer

Unnecessary
detail

Answer more concise

Figure 4. Constructing the MicroVQA multiple choice questions. (0) We defined tasks with domain biological scientists and created 1,061
raw VQA samples. (1) The raw samples were aligned to an exam-style MCQ by manually transforming a small set and optimizing an
LLM prompt to match that alignment. (2) MCQs are further improved using RefineBot, a new iterative method to make MCQs more
challenging. The lower panel shows an example MCQ from raw VQA to final: the annotations highlight key changes that we further
explore in Appendix E.2, where red indicates issues, and green indicates good attributes.

in medical board exam item writing, who reviewed edu-
cational literature on MCQ design [53] and Bloom’s Tax-
onomy for assessing cognitive skills in biomedical exams
[5, 14, 73]. We began by manually transforming 50 user-
submitted raw question-answer pairs, (q0, a0), into one-
best-answer MCQs with k distractors, (q1, a1,d1). These
‘Gold Standard’ MCQs retained the original questions’
meanings while strictly adhering to NBME standards [53]
and minimizing cues that enable test-wise guessing. We
used these gold-standard MCQs in a supervised learning
setup to develop a general LLM prompt, p, that maps raw
question-answer pairs to exam-style MCQs. We lever-
age the DSPy framework [30, 31], which optimizes p to
match the gold-standard MCQ outputs. Additionally, the
optimization process incorporated supervision from LLM-
based quality metrics: content similarity, NBME-aligned
formatting, and the absence of extraneous clues. Further
details are in Appendix E.2.

Stage 2: RefineBot question refinement Although Stage
1 produces exam-aligned MCQs, many remain easily solv-
able due to eliminable distractors (see Appendix D). To
enhance difficulty, we introduce RefineBot, a method that

increases MCQ complexity (Fig. 4). The key idea is that
weaknesses in MCQ construction are revealed by the chain-
of-thought (CoT) answers. The first LLM agent, the eval-
uator/reflector, answers the MCQ with CoT and then re-
flects on the strategies used. For example, a question about
processes inside a virus might have a distractor referring
to surface processes – this can be eliminated without refer-
encing the image. The LLM summarizes its solution strat-
egy into a reflection text: in this case, that the distractor
was implausible based on knowledge that the stated process
does not not occur inside the virus, and so does not match
the question. It passes the reflection to the rewriter LLM
agent. The rewriter revises the question stem and gener-
ates new distractors to invalidate the identified strategies:
in this example it may create distractors referring to pro-
cesses that do occur inside a virus. To prevent significant
changes to the question-answer pair over iterations, we em-
ploy an LLM checker to ensure semantic consistency with
the original pair. The revised MCQ is returned to the eval-
uator; if it still answers correctly, the loop continues. The
process stops if the rewriter fails the checker or after n it-
erations. If it fails, RefineBot can be rerun with a different
seed, often succeeding—a form of inference-time scaling
[11]. All agents are GPT-4o-0806, but to mitigate potential
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Table 3. VQA accuracy on MicroVQA by task: expert visual un-
derstanding (V), hypothesis generation (H), experiment proposal
(E). Models marked ∗ were used in MCQ generation, which may
affect comparative performance, which we investigate in Sec. 5.1.
We therefore additionally include models marked ∗∗, which are
‘weaker’ models from the same provider. The model † is the base
LlaVA for LLaVA-Med. Best values per model subset in bold.

Model V H E Overall

cl
os

ed
so

ur
ce

∗GPT-4o [1] 40.3 32.7 32.0 35.4
∗∗GPT-4o-mini 41.3 38.5 36.0 39.0
∗Claude 3.5 Sonnet [6] 45.3 38.2 34.7 39.0
∗∗Claude-3-Haiku 46.5 38.2 45.3 42.8
Gemini-1.5-Pro [57] 48.3 41.0 43.1 44.2
Gemini-1.5-Flash-8B 48.5 37.3 40.4 42.2

op
en

so
ur

ce

VILA1.5-40B [39] 46.5 39.2 39.6 42.0
VILA1.5-13B 41.8 35.4 41.3 39.1
Qwen2-VL-72B [65] 41.3 41.9 42.4 41.8
Qwen2-VL-7B 44.3 39.2 40.9 41.5
Llama 3.2 90B [16] 39.1 35.3 39.1 37.5
Llama 3.2 11B 30.1 28.1 28.4 28.9
Pixtral 12B [2] 39.8 33.6 32.0 35.6

m
ed

ic
al LLaVA-Med-Mistral-7B [33] 43.0 37.3 47.1 41.6

†LLaVA-Mistral-7B [40] 39.8 31.6 43.1 37.1
Random 22.0 21.9 21.8 21.9

Table 4. Ablation of MicroVQA accuracy scores during the MCQ
generation (process shown in Fig. 4). Accuracy is high because
MCQs have shortcuts (Sec. 4.1) after ‘Stage 1’ exam alignment
for a challenging benchmark, but is lower after ‘Stage 2’. Final
column is the relative decrease in accuracy. Models with ∗ were
used in Stage 2 generation and have the biggest accuracy drops
(bolded). They are grouped with different models from the same
provider in ∗∗.

Stage 1 Stage 2 Relative drop
*GPT-4o 79.2 33.8 -57.3
**GPT-4o-mini 75.7 39.0 -48.4
*Claude-3.5-Sonnet 82.0 39.8 -51.5
**Claude-3-Haiku 76.8 42.8 -44.2
Gemini-1.5-Pro 79.5 44.1 -44.5
Gemini-1.5-Flash 74.5 42.2 -43.3
Qwen2-VL-72B 72.8 41.9 -42.5
Qwen2-VL-7B 68.7 41.5 -39.6

bias against 4o in final evaluation, we also use Claude-3.5-
Sonnet-0620 as the evaluator agent; we assess biases in the
experiments section.

5. Experiments
5.1. Benchmarking MLLMs with MicroVQA

We evaluate state-of-the art multimodal large language
models (MLLMs) on the MicroVQA benchmark. To ensure
a comprehensive assessment, we include multiple model
sizes spanning three categories: closed source, open source,
and specialized medical models – medical is the closest do-
main to microscopy research with specialist MLLMs. We

utilize standard chain-of-thought prompting [72], but for
specialist models that struggle with formatting predictions,
we employ an additional parsing method (Appendix F). We
report mean accuracy in multiple-choice VQA tasks for
each model over three random seeds in Tab. 3.

MicroVQA is challenging for all MLLMs Our evalu-
ation reveals a substantial performance gap between cur-
rent MLLMs and expert-level microscopy analysis in Mi-
croVQA. The leading model, Gemini Pro, achieves only
44.2 overall, and the highest performing task – expert vi-
sual understanding – scores only 48.5. There is surprisingly
little variation in performance between models: the open
source VILA-40B and Qwen2-VL-72B score 42.0 and 41.8,
with Llama-90B only 4.5 points lower. GPT-4o and Claude-
Sonnet were used in MCQ construction, which causes a
small bias that we discuss below. However other models
from the same providers – GPT-4o-mini and Claude-Haiku
– also perform similarly to the top-performing Gemini at
39.0 and 42.8. Next, we consider performance across the
3 tasks. The ‘hypothesis generation’ task stands out as the
hardest for all models, and the gap is strongest for smaller
models. For example hypothesis generation is 4.9 below
overall score in Gemini Flash, and 3.7 worse on VILA-13b.
On the other hand, the visual understanding task has higher
scores in most models, for example by 4.1 points on the top-
performing Gemini Pro. Overall though, no frontier model
stands out as significantly stronger. We hypothesize that the
hardest questions in MicroVQA emphasize microscopy im-
age understanding, and that no generalist models have good
microscopy image understanding.

Smaller models are surprisingly competitive For all
models with a lower parameter version – Gemini, QwenVL,
VILA, and Llama – the drop in performance due to size
is less than 3 for all except Llama, where the drop is 8.6.
Moreover, these drops are smaller than on other multimodal
reasoning benchmarks like MMMU, where for example,
Gemini drops by 9.6 between Pro and Flash-8B [71]. Typ-
ically, smaller models have the same vision encoder, but a
smaller LLM [65]. Since the size of the language model has
a small impact, we hypothesize that for the ‘solved’ part of
MicroVQA, the language-only reasoning is relatively sim-
ple compared to domains like math that require multi-step
logic. This suggests that other aspects of MLLM reasoning
are more challenging, like multimodal reasoning. If true,
this suggests that future work could focus on stronger image
representations, and this idea is supported by the qualitative
error analysis in Sec. 5.2.

Specialist biomedical training does improve perfor-
mance While no specialist MLLMs have been developed

7



for microscopy research in particular, LLaVA-Med is fine-
tuned on scientific articles from PubMed that include data
types overlapping with MicroVQA – especially (tissue)
pathology. In Tab. 3, we compare LLaVA-Med against it’s
base model, LLaVA-Mistral-7B and find overall stronger
performance by 4.5 points. This suggests two clear oppor-
tunities for improving MicroVQA performance. The first
is to instruct-tune with a dataset that better aligns with the
MicroVQA data domain: not only tissue pathology, but also
fluorescence and electron microscopy, which is available in
scientific articles [77]. The second is to simply begin train-
ing from a stronger base model like VILA. Beyond that,
there is more to explore in MLLM specialization, such as
tuning the base image encoder for microscopy.

Models

Accuracy Accuracy

2

3

4

5

1.1 Compare 
image sets

1.2 Identify 
abnormalities

2.1 Causal 
mechanisms

2.2 Functional 
implications

3.1 Suggest 
experiment

3.2 Address 
technical issue

Gemini-1.5-Pro VILA1.5-40B LlaVA-Med-Mistral-7B

Bloom’s LevelSub-task Taxonomy

Figure 5. Performance by sub-task and Bloom’s level for best
models: Gemini-1.5-Pro (closed source), VILA1.5-40B (open-
source), and LlaVA-Med-Mistral-7B (medical).

MCQ generation is very effective but can disadvantage
RefineBot models We introduced a new MCQ generation
method via our agent-based system, RefineBot, to make
MCQs more challenging. Tab. 4 shows that between stage
1 and stage 2 (before and after RefineBot), the relative ac-
curacy for all models drops by between 39% and 57%.
However, the most significant drops are for models used in
the refining process (GPT-4o and Claude-3.5-Sonnet), sug-
gesting that the adversarial process introduced a small bias
against these models. Further evidence is that their weaker
related models – GPT-4o-mini and Claude-3-Haiku – had
smaller accuracy drops. Despite making fair evaluation
challenging, our use of frontier LLMs in the refinement pro-
cess is well-motivated, as these models are best positioned
to generate challenging, high-quality MCQs that probe the
boundaries of current capabilities. Moreover, the bias is rel-
atively modest – less than 10 points between GPT-4o and
Gemini – while the benefit is a huge increase in difficulty
across all test MLLMs, as seen in Tab. 4.

Metadata-based analysis supports deeper error analy-
sis Fig. 5 shows error rates based on attribute tag. In Ap-
pendix F we explore results further – namely that multi-
image reasoning has surprisingly good performance, higher
level Bloom’s questions are harder, and (not shown) rare
image modalities perform worse.

5.2. Error analysis on MicroVQA

To understand MicroVQA’s performance, three biomedical
experts reviewed the Chain-of-Thought (CoT) responses of
30 samples on Claude 3.5 Sonnet, with each review requir-
ing at least 45 mins of careful analysis. Errors were clas-
sified into a major category and minor contributing errors
were also noted. Expert perception accounted for 50% of
errors, while 30% were knowledge errors, and 13% were
due to overgeneralization or oversimplification errors. Ad-
ditionally, we identified that the most common categories
were perception error, knowledge, and overgeneralization.
The remaining errors were due to reasoning or hallucina-
tion. Since the dominant error type is perception, we show
an example in Appendix F.

Expert perception errors occurred when the model mis-
interpreted visual features, leading to incorrect inferences.
As shown in the Appendix F ‘perception’ example, the re-
sponse correctly perceives small electron-dense objects but
incorrectly classifies them as ribosomes. In contrast, ri-
bosomes tend to be larger and have a more regular shape
and lower contrast. Language associations may have con-
tributed to the preference for ribosomes since they have
been studied by EM since the 1950s. Overall, perception
errors were the dominant error in our analysis, which sug-
gests that future methods should improve vision representa-
tions in MLLMs for microscopy.

Knowledge errors highlight gaps in nuanced biomedi-
cal knowledge. One example from this category in Ap-
pendix F deals with understanding how protein localiza-
tion changes during cell signaling. An experiment gives
information about a transmembrane signaling protein, and
the question is asked to interpret the image and explain the
function in these cells. The model perceives a punctate dis-
tribution and assumes the role of coordinating intracellular
vesicle trafficking. This represents a shallow interpretation
that could have been mitigated with specialized biomedi-
cal knowledge. These errors could be mitigated by giving
MLLMs access to biology databases at inference time.

Overgeneralization errors reflect the model’s tendency
to apply broad scientific principles without regard for spe-
cific context. In one example, the question asks to compare
the risk of malignancy of a tumor, schwannoma, to other
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nerve sheath tumors. During reasoning, the model proposes
a simplified question–what is true about schwannoma–
which proceeds to answers while ignoring the comparison.

6. Conclusion
MLLMs hold great potential for advancing scientific dis-
covery. We aim to inspire the development of broadly appli-
cable scientific AI systems. Future directions include train-
ing models for more robust image representations, integrat-
ing knowledge bases, exploring open evaluation methods,
and studying LLMs’ reasoning over hypotheses. Beyond
microscopy, we hope our benchmark serves as a blueprint
for AI evaluation in expert-driven domains, fostering col-
laboration across fields like biology, chemistry, and materi-
als science.
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MicroVQA: A Multimodal Reasoning Benchmark for Microscopy-Based
Scientific Research

Supplementary Material

Appendices A-C include acknowledgments, author contributions, ethics, and discussion of limitations and future work.
The remaining sections correspond to sections in the paper. Appendix D is benchmark details from the main Sec. 3. Ap-
pendix E is MCQ generation details from the main Sec. 4. Appendix F is the experiments details from the main Sec. 5.

We release an anonymous codebase called microVQA, which has the code used for dataset construction and evaluation.
They are attached as supplementary material, and we will release all code to the public upon publication.

Table of Contents
A. Acknowledgments and author contributions 1

B. Ethics 1

C. Limitations and future work 2

D. Benchmark details 3
D.1. Accessing MicroVQA Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
D.2. Dataset Schema and Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
D.3. Training contamination mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
D.4. Benchmark attribute details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
D.5. Related benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
D.6. Bloom’s taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
D.7. Methodology for proposing tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

E. MCQ generation details 6
E.1. Question collection process details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
E.2. Experiment on naive MCQ generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
E.3. Stage 1 MCQ generation (exam alignment) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
E.4. Stage 2 MCQ generation (RefineBot) details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
E.5. Final MCQ quality check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
E.6. MCQ generation results: stage 1 exam alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
E.7. MCQ generation results: stage 2 RefineBot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

F. Experiments details 14
F.1. Evaluation prompts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
F.2. Model details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
F.3. More experiments on attribute-level information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
F.4. Error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

A. Acknowledgments and author contributions

B. Ethics
Ethical use of biomedical data: MicroVQA was developed with a commitment to ethical practices in handling biomed-
ical research data. All microscopy images included in the dataset were either original, unpublished data or sourced from
open-access articles (e.g., CC-BY licensed) published after January 2024. The dataset does not include patient-identifiable
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information, and MicroVQA adheres to applicable privacy and research ethics guidelines. The dataset does not constitute
human subjects research.

Bias and data diversity: Recognizing the potential biases in AI models trained on biomedical data, we have prioritized
diversity in curating MicroVQA. The dataset includes microscopy images spanning multiple organisms, imaging modalities,
and experimental conditions to provide a diverse benchmark for performance evaluation. However, we acknowledge that
certain imaging types, such as brightfield and fluorescence microscopy, may be overrepresented due to their prevalence in the
field. Future iterations of MicroVQA will seek to address such imbalances to improve dataset representativeness.

Potential societal impacts: Biomedical AI models, including those trained on MicroVQA, have the potential to influence
research and healthcare significantly, both positively and negatively. While these models can accelerate scientific discovery,
they may also perpetuate biases in training data or result in uneven performance across demographic or biological groups.
To mitigate these risks, MicroVQA includes metadata annotations to support the analysis of potential biases and emphasizes
diverse data sourcing. We will engage with the research community to address emerging ethical concerns.

Data licensing and usage: MicroVQA is distributed under the Creative Commons Attribution-ShareAlike 4.0 Interna-
tional (https://creativecommons.org/licenses/by-sa/4.0/) license to promote transparency and collaboration in the research
community. This license reflects our efforts to balance open access with the ethical use of data, enabling both academic and
commercial applications of the dataset while adhering to original license requirements. Full licensing details are available at
https://creativecommons.org/licenses/by-sa/4.0/.

C. Limitations and future work

While MicroVQA advances research-level reasoning benchmark significantly, we can identify a number of limitations and
avenues for future work.

Open vs closed evaluation Like most VQA benchmarks, we used multiple-choice (MCQ) evaluation. However down-
stream applications will obviously operate in an open setting, without options and requiring more detail. MLLM research
does have some open benchmarks [70], though impartial evaluation is a significant challenge. Our early experiments with
open prompting suggest that models like GPT-4o tend to give very vague answers, and tend to depend strongly on the text
part of the input prompt.

Dataset scale Our final dataset had 1061 samples, which is smaller than some other VQA benchmarks like MicroBench
[41] and OmniMedVQA [26]. MicroVQA’s scale sufficient to compare overall scores between models, however statistical
power starts to become limiting when trying to compare different models on subsets of the dataset. How does this compare
to other benchmarks? As we can see from Tab. 2 and Fig. 3, the larger datasets tend to be those with lower-level reasoning
according to Bloom’s taxonomy. Their samples tend to be derived automatically from metadata tags or classification labels.
Benchmarks with comparably high-level reasoning, like MMMU-Pro, have a similar scale to ours (1,700). In the language-
only domain, the research-level reasoning benchmark GPQA has 448 samples. This trend reflects a clear, practical limitation:
it is very time-consuming for humans to create difficult reasoning questions, and the pool of capable experts is small.

Breadth of dataset attributes in microscopy We aimed for MicroVQA to cover a broad range of the microscopy dis-
cipline; for example, we have samples from all four relevant scales – tissues, cell, subcell, atomic. However each human
annotator is an expert in a subset of microscopy and biology, so there are practical limits on dataset coverage. We, therefore,
chose to focus on the most common imaging modalities – brightfield, fluorescence, electron – while skipping less common
modalities like Raman spectroscopy. In terms of sample types, we emphasized those relevant to humans – human and mouse
– while having only a few samples from rare organisms like bottlenose dolphin.

Coverage of scientific reasoning Looking even more broadly, the motivation of this work is to advance reasoning in
scientific research generally. However, we use microscopy in particular. This is because of a clear trade-off in breadth vs
depth. Our dataset strikes a good balance, given that microscopy represents a large portion of visual data in biomedicine and
biology. Future work can reuse our framework to generate reasoning VQA benchmarks in other fields of visual biomedicine
and biology, such as in medicine [26] or ecology [77].
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Resolving MCQ shortcuts A key contribution in this paper is the RefineBot for generating multiple choice questions
(MCQs) that are too challenging to solve using text-only shortcuts. Our approach used the outputs of existing MLLMs
as signal to make distractors harder. However, this cannot guarantee the removal of shortcuts, and more generally, harder
distractors may exist. Therefore, the next generation of LLMs may be able to identify and exploit new shortcuts. If that
occurs, we can simply run RefineBot again using the new LLM, creating MicroVQA-2. This strategy could be used for other
VQA evaluations.

D. Benchmark details

D.1. Accessing MicroVQA Benchmark

MicroVQA is an expert-curated benchmark for multimodal scientific reasoning, specifically in microscopy-based biologi-
cal research. The dataset comprises 1,061 multiple-choice questions (MCQs) created by biological researchers to represent
authentic scientific practice. Each MCQ is paired with an associated microscopy image and metadata describing the experi-
mental context. A demonstration subset of 28 instances is available for initial exploration.

The MicroVQA dataset is publicly accessible on HuggingFace at https://huggingface.co/datasets/microvqa/microvqa. It
is distributed under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) license, allowing reuse
and share-alike redistribution with attribution. The dataset is available in Apache Arrow and Parquet formats to ensure
efficient data handling. These formats support fast serialization, memory mapping, and streaming from the web, facilitating
seamless integration into machine learning pipelines.

D.2. Dataset Schema and Structure

The dataset schema defines the fields included for each data instance. Figure 6 provides a schema summary, while a sample
data instance is detailed below 7.

{
"image_id": datasets.Value("string"),
"image": datasets.Image(decode=True, id=None),
"label": datasets.ClassLabel(),
"label_name": datasets.Value("string"),
"domain": datasets.Value("string"),
"subdomain": datasets.Value("string"),
"modality": datasets.Value("string"),
"submodality": datasets.Value("string"),
"stain": datasets.Value("string"),
"microns_per_pixel": datasets.Value("string"),
"questions": datasets.Value("string"),

}

Figure 6. Example data schema.

D.3. Training contamination mitigation

To mitigate contamination, all data in MicroVQA were sourced from original, unpublished microscopy images or open-
access articles (e.g., CC-BY-licensed) published after January 2024. Additionally, unique canary strings were embedded in
the dataset to detect potential contamination during fine-tuning or model evaluation.

D.4. Benchmark attribute details

The MicroVQA benchmark is designed to evaluate multimodal reasoning capabilities in biomedical research contexts. The
dataset incorporates diverse attributes such as organism, research subject, imaging modalities, and biological length scales
(image scales) to ensure a comprehensive assessment1. These metadata not only enhance the scientific relevance but also
enable analysis of reasoning across different biological and microscopy contexts. This section describes the methodology
used to define, compute, and annotate these key attributes.

The benchmark comprises 1,061 total questions, including 423 questions containing multiple images combined into pan-
els. A collage of sample images is shown in 24. The average MCQ token lengths were computed using the o200k_base
tokenizer, with separate calculations for the raw input and formatted multiple-choice questions. Imaging modalities are
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{
"image_id": "d54bb7ec-284f-4218-a47d-af87bb371de5",
"image": datasets.Image(decode=True, id=None),
"label": datasets.ClassLabel(),
"label_name": "pathology",
"domain": "pathology",
"subdomain": "gastrointestinal pathology",
"modality": "light microscopy",
"submodality": "brightfield microscopy",
"stain": "H&E",
"microns_per_pixel": "Not provided",
"questions": "Question:

‘‘‘A hematoxylin and eosin (H&E)-stained micrograph shows cellular
formations within a gastrointestinal tissue sample with unique
organization and cellular patterns. What pattern and morphology do these
cells most closely align with?

A) Bundles of elongated cells with pale pink cytoplasm and uniform oval
nuclei in a crisscross pattern

B) Circular groups of cells with mucin in central spaces and small,
dark nuclei

C) Dense arrays of polygonal cells with small nucleoli and vacuolated
cytoplasm

D) Rows of cells with conspicuous cytoplasm and rounded nuclei
E) Diffused arrangement of cells with transparent cytoplasm

and irregularly clustered chromatin

Correct Answer: A) Bundles of elongated cells with pale pink cytoplasm
and uniform oval nuclei in a crisscross pattern‘‘‘

}

Figure 7. Example data instance.

broadly categorized into light, fluorescence, and electron microscopy. Biological length scales span four levels: tissue (mil-
limeter scale), cellular (micrometer scale), subcellular (nanometer scale), and atomic (angstrom scale), enabling reasoning
across diverse structural hierarchies.

To annotate attributes such as organism, specimen, and research subject, we manually reviewed random samples from
the dataset and created a taxonomy to cover the most likely categories. A biomedical domain expert manually labeled these
categories for 50 raw input question-answer pairs and performed initial prompt engineering. We used DSPy to optimize the
prompt and few-shot examples on the labeled dataset. The input context included the taxonomy of organisms8 and research
subjects 9.

These annotations were the gold standard to guide DSPy prompt engineering for automated attribute labeling on the full
dataset. Prompt instructions included fallback rules (e.g., tagging ”None” for indeterminate attributes) to ensure accuracy
and minimize hallucination. The optimized pipeline annotated all 1,061 questions while ensuring the validity of the dataset
attributes.

D.5. Related benchmarks

In section 3.3 and Tab. 2 we compare MicroVQA to related scientific multimodal benchmarks, focusing on its intersection
of high-difficulty and advanced reasoning questions. Beyond these key attributes, we examine the sources of the questions.
Most benchmarks rely on existing question repositories, such as exams, web-based QA datasets, textbooks, or other MCQ
datasets. This approach bypasses the need for MCQ generation methods, as the questions and options are pre-tested and
curated, making these benchmarks more representative of established tasks. Another common strategy involves reformatting
classification datasets into MCQs using question templates, which increases task diversity but often limits scenario unique-
ness and language variability. In contrast, MicroVQA is built by directly querying experts for challenging, domain-specific
research questions. By starting with long form questions and answers, our approach requires an innovative MCQ gener-
ation method, ensuring uniquely tailored questions that push the boundaries of domain-specific reasoning and knowledge
assessment.

D.6. Bloom’s taxonomy

Bloom’s Taxonomy is a model for evaluating cognitive skill levels in educational assessments. It has six hierarchical levels
of learning: recall, understand/comprehend, apply, analyze, evaluate, and create. Multiple-choice questions can test five of
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Taxonomy of organisms in biology| # Taxonomy of Organisms in Biology
and Biomedical Research:
Apis mellifera (Honeybee)

Social insect with complex behavior.
Keywords: honeybee, social behavior, ecology, pollination.

Arabidopsis thaliana (Thale Cress)
Model plant organism.
Keywords: Arabidopsis, plant genetics, photosynthesis.

Caenorhabditis elegans (C. elegans)
Transparent nematode worm.
Keywords: worm, development, aging, programmed cell death.

Danio rerio (Zebrafish)
Fish with transparent embryos.
Keywords: zebrafish, vertebrate development, embryology.

...

Drosophila melanogaster (Fruit Fly)
Insect with rapid life cycle.
Keywords: fruit fly, genetics, development.

Escherichia coli (E. coli)
Bacterium used in genetics and molecular biology.
Keywords: bacteria, gene expression, plasmids.

...
Homo sapiens (Human Cells)

Cultured human cells (e.g., HeLa, HEK293, A431, U2OS).
Keywords: human cell lines, immortalized cell lines

In vitro (None)
Purified molecules and reactions in controlled environments.
No living cells or organisms.
Keywords: purified proteins, purified molecules, cell-free systems

...

Figure 8. Examples of taxonomy classes used as context to LLM to assign an organism to a question. A YAML file with the full taxonomy
will be released with the code.

Bloom’s levels but not the sixth level, ”create.” These levels provide a structured framework for assessing lower-order and
higher-order thinking skills, which are essential for designing robust benchmarks like MicroVQA.

Initial attempts to use LLMs to classify Bloom’s levels for biomedical visual question answering (VQA) benchmarks
revealed a systematic overestimation of cognitive skill levels. This discrepancy limits the naive use LLMs for automated
Bloom’s classification, perhaps due to the nuances of applying Bloom’s taxonomy in domain-specific contexts. To ensure ac-
curate classification of Bloom’s level, a physician-scientist with NBME training in item writing and familiarity with Bloom’s
classification manually labeled Bloom’s level for 200 examples from public MCQ questions, MicroVQA, MicroBench, and
ScienceQA. These examples were used to fine-tune GPT-4o-mini (gpt-4o-mini-2024-07-18) to classify Bloom’s level and
align with expert judgments.

The fine-tuned Bloom’s classifier was applied to MicroVQA and numerous public science/biomedical benchmarks to
assess the cognitive skills evaluated by each question. Each question was mapped to one of Bloom’s levels, providing
insights into the distribution of cognitive tasks across the benchmark. This analysis revealed that while existing benchmarks
predominantly tested lower-order skills (e.g., recall and comprehension), MicroVQA has a greater emphasis on questions
that require higher-order reasoning (e.g., analyzing, evaluating), filling a critical gap in multimodal scientific reasoning
assessments.

D.7. Methodology for proposing tasks

Here, we expand on the task proposal methodology introduced in Sec. 3.2 To define specific reasoning tasks aimed at ad-
vancing biomedical research, we conducted a comprehensive expert consultation process. Through structured interviews with
nine Principal Investigators and postdocs specializing in microscopy research, including participants from both academia and
industry, we developed a framework for tasks that would meaningfully integrate multimodal large language models (MLLMs)
into microscopy research workflows.
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Taxonomy of research subjects| #Taxonomy of Research Subjects in Biology:
Anatomy

Study of the structure of organisms and their parts.
Keywords: organs, tissues, morphology, physical organization.

Biochemistry
Chemical processes within living organisms.
Keywords: proteins, enzymes, nucleic acids, metabolic pathways.

...

Cell and Molecular Biology
Structure and function of cells and their molecules.
Keywords: cellular processes, gene expression, molecular pathways.

...
Developmental Biology

Process by which organisms grow and develop.
Keywords: embryology, morphogenesis, genetic regulation.

...
Genetics

Study of heredity and gene function.
Keywords: DNA, inheritance, genetic variation, gene expression.

Immunology
Immune system in health and disease.
Keywords: antibodies, immune response, pathogens, vaccines.

Microbiology
Study of microorganisms.
Keywords: bacteria, viruses, fungi, parasites, microbial ecology.

Neurobiology
Structure and function of the nervous system.
Keywords: neurons, brain, neural circuits, cognition.

...
Structural Biology

Molecular structure of biological macromolecules.
Keywords: protein folding, nucleic acid structures, crystallography.

...

Figure 9. Examples of taxonomy classes used as context to LLM to assign a research subject to a question. A YAML file with the full
taxonomy will be released with the code.

The task selection process followed specific criteria: tasks must utilize image-text inputs and text outputs suitable for
MLLMs; they should require higher-order reasoning beyond simple image processing; and they should emphasize core
experimental activities (experimentation, analysis, and action) rather than auxiliary tasks like literature review or writing
[25].

Our methodology involved a two-phase interview process. The first phase consisted of initial one-hour individual sessions
with eight research groups featuring open-ended, unstructured discussions about key challenges in microscopy experiments,
potential applications of MLLMs, current workflows and unmet needs, and possible AI system integration points. We then
conducted follow-up interviews one week later to consolidate findings and build consensus.

To avoid anchoring biases, we intentionally withheld predefined categories during initial interviews. This approach en-
abled unbiased task identification and allowed us to capture a broad spectrum of potential use cases. Through this iterative
process, we identified three essential capabilities that align with the scientific life cycle for microscopy experiments: advanced
image interpretation, hypothesis generation, and experimental design/hypothesis testing.

E. MCQ generation details
E.1. Question collection process details

Data collection used a structured submission form shared with collaborators. The form required users to provide the follow-
ing:
• Image or Image Set: Users uploaded microscopy images, optionally including multiple images for comparative questions.
• Experiment Details: A brief description of the experimental setup, imaging modalities, and any relevant biological context.
• Question Text: Each question was aligned with one of three predefined use cases: identifying interesting features, explain-

ing mechanisms, or proposing next steps.
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• Answer and Distractors: Contributors provided a correct answer and biologically plausible incorrect answers.
Quality control was performed in multiple rounds. To familiarize users with the task and data requirements, each user

submitted an initial form with 4-6 questions for manual quality control and feedback. Feedback was provided to users on
improving question specificity, ensuring the questions required image interpretation rather than relying solely on general
knowledge. Contributors were encouraged to refine their submissions based on the feedback to better align with the tasks
and goals of the MicroVQA benchmark.

Users were encouraged to submit data from multiple sources, imaging modalities (e.g., fluorescence, electron microscopy),
and biological scales (e.g., tissue, cellular, subcellular) to promote diversity. Contributors could upload microscopy images
from their experiments or use CC-BY publicly available images, such as those from preprints or publications released after
January 2024. This ensured that all images were either original or sourced from open-license publications, enabling their use
in an open-source benchmark.

E.2. Experiment on naive MCQ generation

In Sec. 4.2, we discuss how the naive approach to MCQ generation – simply zero-shot prompting GPT – leads to MCQs that
are very easy for frontier models to solve. Which ultimately motivated our two-stage MCQ generation approach. Here, we
discuss those experiments in more detail. We create a naive version of MicroVQA using a standard prompt [26, 68]:

You are an expert in molecular and cell biology, and in microscopy.

I will give you an original biology-related question and its answer, your task is to rephrase an equivalent
question with identical answer. The question related to an image, and we don’t show the image.
Meanwhile, I want to transfer this QA-pair into a multi-choice question. Please generate 5 incorrect options to
construct the candidate options.

{{QUESTION}}

{{ANSWER}}

Then, we evaluated this naive MicroVQA on the top closed source models with the image, and to study the over-reliance
on language shortcuts, we evaluated a text-only version. In the text-only setting, we add the following to the prompt: “If
an image is mentioned, ignore this information and try your best to answer the question.”. Tab. 5 shows the results of this
experiment.

Table 5. Performance on MicroVQA MCQs with naive MCQ generation. We report overall VQA and VQA without the image.

VQA VQA-no-image
GPT-4o 85.1 82.7
Claude-3.5-Sonnet 91.4 88.4
Gemini-1.5-Pro 88.5 82.4

All models score over 80% on questions that are from a specialized domain. We hypothesize that this reflects a problem
with the non-trivial task of MCQ generation from raw VQAs for several reasons. First, the high ‘VQA-no-image’ scores
across all models suggest that selecting the correct option does not require image understanding, despite the raw VQA
samples being designed to incorporate image-based reasoning. An alternative explanation is that the questions themselves
may be too easy for advanced models. Second, we test this alternate explanation by performing open evaluation on a subset
of the raw VQA queries– that is, we queried GPT-4o with the questions but without the options. Here, the models rarely gave
good responses, even after careful prompting. This suggests that models are leveraging test-taking strategies to eliminate
distractors [22]. Third, we examined the chain-of-thought responses in the VQA-no-image case, which suggested the models
often eliminate distractors based on information from the text question. Therefore, we conclude that there are issues with the
improper generation of the MCQs using the naive strategy.

What exactly are the problems with MCQ generation? Qualitatively, the types of errors are the same as those we discuss
in Appendix E.7, so we refer readers to that section to get a deeper understanding.

E.3. Stage 1 MCQ generation (exam alignment)

The first stage transformed raw, open-ended questions and long-form answers into well-structured MCQs aligned with es-
tablished principles of biomedical exam design. A physician-scientist trained in medical board exam item writing initiated
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the process by reviewing biomedical educational literature, NBME guidelines [53], and Bloom’s taxonomy for assessing
cognitive skills [5, 14, 73]. The expert manually converted 50 raw question-answer pairs into one-best-answer MCQs with
biologically relevant distractors using the literature review and their prior training. This manual effort ensured that the
MCQs preserved the original question’s intent and scientific validity while adhering to educational standards. Distractors
were crafted to require reasoning and prevent reliance on superficial cues like word association or general knowledge, thus
maintaining the depth and complexity of the original content.

To scale this process, the expert designed an initial LLM prompt for automated Stage 1 MCQ generation. This prompt
and the manually curated training data were input for DSPy-based prompt optimization. Using the MIPROv2 optimizer, the
prompt was refined within a Chain of Thought (CoT) framework combined with retrieval-augmented generation (RAG)
pipelines powered by o1-mini. Optimization was guided by a custom metric evaluated by a separate LLM judge
(o1-mini). The judge assessed each revised MCQ across three criteria: (1) semantic similarity to the original question
and answer, (2) adherence to NBME formatting standards, and (3) minimization of extraneous information that could pro-
vide unintended clues. The optimization metric was weighted to prioritize preserving the original meaning and scientific
validity, with lesser emphasis on formatting and extraneous text. Additional implementation details are provided in the
source code.

E.4. Stage 2 MCQ generation (RefineBot) details

The goal of RefineBot is to take MCQs that are too easy for MLLMs – especially where they are leveraging language-only
shortcuts – and to rewrite them to make them more challenging. It is the third panel in Fig. 4. For more details on what types
of improvements are achieved, see Appendix E.7. The complete code for RefineBot is released.

A single RefineBot iteration Below, we show the pseudo-code for a single-question revision. The input is a question
string, a list of options, and the index of the correct answer in the options. It returns a tuple (code, MCQ) where code is a
string on whether the run was successful, and MCQ is either the revised multiple choice question if the rewrite was successful
or otherwise None.

1 def revise_mcq(question: str, choices: list, correct_idx: int, max_iters: int = 5):
2 # Store original version
3 original = {’question’: question, ’choices’: choices, ’correct_idx’: correct_idx}
4 reflections = []
5

6 for iter in range(max_iters):
7 # Try answering without image
8 result = evaluate_without_image(question, choices, correct_idx)
9

10 if not result.can_answer:
11 code = ’SUCCESS_NO_CHANGE’ if iter == 0 else ’SUCCESS_REWRITE’
12 return code, (question, choices, correct_idx)
13

14 if iter == max_iters - 1:
15 return ’FAIL_ITERATIONS’, None
16

17 # Reflect on strategies used to solve
18 reflection = analyze_why_answerable(result)
19 reflections += reflection
20

21 # Rewrite based on all reflections from all iterations
22 new_version = rewrite_question(reflections, original)
23

24 # Verify the rewrite didn’t change the meaning meaning preserved
25 if not check_meaning_preserved(original, new_version):
26 return ’FAIL_REWRITE’, None
27

28 # Update current version
29 question = new_version[’question’]
30 choices = new_version[’choices’]
31 correct_idx = new_version[’correct_idx’]
32

33 return ’FAIL_UNKNOWN’, None
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This process is also described in the main text. One detail to note: the rewrite_question function receives the
reflections from all prior iterations, not just the current one. In this way, the rewriting function can consider all possible
strategies that have been identified. All LLM calls are to gpt-4o-2024-08-06.

To better illustrate the method, we step through a single example. This way, we can show the prompts and understand
responses.
1. The evaluation of a question with the evaluate_without_image prompt and response:

Prompt
--------------------------------------------------------------------------------
The following question is supposed to be paired with an image. We will not provide the image, so answer to the

best of your ability.
In an electron microscopy image of a mouse primary embryonic cortical neuron expressing full-length human mHTT

(BACHD), "eye-ball" shaped features are observed in the top left corner that appear anomalous. What is the
most likely cause of these features?

Think step by step and then output the answer in the format of "The answer is (X)" at the end.

(a) Aggregation of human mHTT protein within the neuron
(b) Ice contamination from liquid nitrogen during sample preparation
(c) Formation of intracellular vesicles during neuron development
(d) Artifacts arising from excessive heavy metal staining

--------------------------------------------------------------------------------
Response (target answer is b)
--------------------------------------------------------------------------------
To determine the cause of the "eye-ball" shaped features observed in the electron microscopy image, we can

analyze each option step by step:

(a) Aggregation of human mHTT protein within the neuron: Aggregations of proteins can indeed appear as
anomalous structures under electron microscopy. However, these typically have irregular shapes and may not
consistently resemble "eye-ball" shapes.

(b) Ice contamination from liquid nitrogen during sample preparation: Ice contamination can occur during sample
preparation, particularly if samples are not handled properly when flash-frozen. This can lead to

anomalous features appearing in microscopy images. These features might appear as circular or irregular
shapes, potentially looking like "eye-balls."

(c) Formation of intracellular vesicles during neuron development: Intracellular vesicles are normal structures
within neurons and other cells. Although they can appear during development, they are typically well

characterized and documented, and are less likely to be described as anomalous in the context given.

(d) Artifacts arising from excessive heavy metal staining: Over staining can indeed produce artifacts in
electron microscopy images. While staining artifacts are plausible, they might not specifically result in "
eye-ball" shapes unless the staining process consistently targets specific round structures.

Considering the nature of the descriptors ("eye-ball" shaped, anomalous), option (b) ice contamination is often
a source of unexpected features in microscopy images that could fit the appearance described, as ice can

form circular shapes.

Therefore, the most likely cause of these features is (b) Ice contamination from liquid nitrogen during sample
preparation.

The answer is (b).

2. If the answer is incorrect, then the question is already hard enough, and we can exit. Otherwise, we call the
analyze_why_answerable function, which reflects on how this answer was achieved. It continues in the same
conversation:

--------------------------------------------------------------------------------
User
--------------------------------------------------------------------------------
That is correct.

Explain how you were able to answer the question without access to the image - only the question_stem and
choices.

What strategies did you use?

Then, briefly summarize these "language-only strategies" into a short list.

Finally, say whether your reasoning was closer to:
- ’deduction’: you answered with high confidence because you had enough information.
- ’abduction’: you answered with lower confidence you made an informed guess.

Be concise in your final response.

--------------------------------------------------------------------------------
Assistant
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--------------------------------------------------------------------------------
To answer the question without the image, I relied entirely on analyzing the given information and the

plausible characteristics of each option. Here’s a breakdown of my strategy:

1. **Keyword and Context Analysis**: I focused on key descriptors such as "eye-ball" shaped features and their
being "anomalous" in an electron microscopy image of neurons expressing human mHTT. This guided me to
consider characteristics commonly seen under electron microscopy.

2. **Knowledge of the Subject Matter**: I applied general knowledge about electron microscopy artifacts and
protein behavior. This helped me weigh the likelihood of each option based on what typically causes
specific image features.

3. **Process of Elimination**: By understanding the nature of each optionincluding potential artifacts or
structures (such as vesicles or ice) in microscopy-I systematically assessed the validity of each scenario
in relation to the described features.

4. **Logical Inference**: I inferred which scenario most commonly results in anomalies resembling "eye-ball"
features, favoring the simplest explanation.

Summary of "language only strategies":
- Analyze keywords and context
- Apply relevant subject matter knowledge
- Use process of elimination
- Make logical inferences

The reasoning was closer to ’abduction’ as I made an informed guess based on patterns and typical causes, given
that I lacked direct visual confirmation.

3. Next, we call rewrite_question. Here, the templated variable {{conversations}} has the full conversa-
tions produced by the function analyze_why_answerable in the previous call and from all other iterations. The
{{n_chat}} just indicates how many conversations there are included:

Below, I will display {{n_chat}} chat conversations between a ’user’ and an LLM ’assistant’.

In each conversation
- a user asks the assistant to answer a multichoice VQA question, however they do not provide the image.

They only get the question_stem and choices.
- the question_stem and correct answer are similar to other conversations, however the distractors are

different
- the assistant then answers correctly.
- the user then asks the assistant to explain how it answered the question with only the text.
- the assistant then summarizes what strategy they used to answer the question.

Altogether, these conversations give examples of language shortcuts that need to be avoided when constructing
the question_stem and choices.

Here are the conversations:

{{conversations}}

Your task is to rewrite the question_stem and choices so that a different LLM ’assistant’ cannot use the
language-only strategies that were identified in these past conversations.

Include an ’explanation’ about why your new set of distractors are better.
Your revised choices should include the correct answer at the ’correct_index’.

Your revised question_stem and choices should not significantly change the meaning of the question and correct
answer.

You are free to change the distractors a lot to achieve this task.
Include {{n_choices}} choices.
The choices should not be made too different in length and detail to the original question stem and choices.
Note that the question stem may contain important cues that cannot be removed. E.g. if a question asks about

the "green stain" in an image, you cannot change it to "stain" because it introduces ambiguity.
The choices should not include the letters in front like (a), (b), ...

Return a json

The output of this function is a JSON and is:

{
"question_stem": "In an electron microscopy image of a neuron expressing human mHTT (BACHD) protein, distinct,

spherical features are prominent and seem to be atypical. What is the most probable explanation for
these features?",

"choices": [
"Concentration of cellular waste products leading to distinct morphological anomolies",
"Formation of air bubbles introduced during sample immobilization processes",
"Ice contamination from liquid nitrogen during sample preparation",
"Inclusion bodies formed by aggregated proteins expressing during stress response",
"Cellular morphological changes during mitotic division"

],
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"correct_index": 2,
"explanation": "The revised options introduce plausible scientific phenomena that could also result in

spherical or distinct anomalies. This set of distractors is more varied and grounded in legitimate
alternative explanations without leading the responder towards the correct answer through language
patterns. For example, air bubbles and protein inclusion bodies might mimic sphere-like structures.
Additionally, by adding an unrelated phenomenon like cellular changes during division, the set confuses
the language pattern strategy previously used. Thus, the correct choice of \"Ice contamination from
liquid nitrogen\" stands out less and necessitates either visual confirmation or real understanding of
sample preparation outcomes to identify correctly."

}

Notice that the response includes an explanation of why it made the changes, and the changes relate to what was in the
reflection, adding interpretability.

4. Finally, we check that the rewrite has not changed the semantic meaning of the question and answer.
Prompt

********************************************************************************
Below are two question-answer pairs.
The question-answer pairs are part of VQA triplets, and both pairs use the same image.

Are these question-answer pairs semantically equivalent?
Or are they significantly different?
Give a true/false and also an explanation.

QUESTION 1:
In an electron microscopy image of a mouse primary embryonic cortical neuron expressing full-length human mHTT

(BACHD), "eye-ball" shaped features are observed in the top left corner that appear anomalous. What is the
most likely cause of these features?

ANSWER 1:
Ice contamination from liquid nitrogen during sample preparation

QUESTION 2:
In an electron microscopy image of a neuron expressing human mHTT (BACHD) protein, distinct, spherical features

are prominent and seem to be atypical. What is the most probable explanation for these features?

ANSWER 2:
Ice contamination from liquid nitrogen during sample preparation

********************************************************************************
Response, is_equivalent: True

********************************************************************************
is_equivalent: Both question-answer pairs revolve around electron microscopy images depicting neurons

expressing the human mHTT (BACHD) protein. The main focus in each question is on the presence of unusual
spherical (or ’eye-ball’ shaped) features. In both cases, the identical explanation is provided: ice
contamination from liquid nitrogen during sample preparation.

While the wording differs slightly, the core components, contexts, and the ultimate explanation remain
consistent between the two pairs. Thus, they can be considered semantically equivalent as they describe the
same phenomenon with the same reasoning for the observed anomalies.

5. If the meaning check step fails, then we exit with a fail as we notice that once the meaning deviates it will become more
distorted with further iterations. Otherwise, we update the MCQ, and start the loop again. Where the first function call in
the new loop will check whether this revised MCQ is now too hard or needs to be rewritten.

Calibrating the preservation of meaning Since there is a risk that the rewriter will change the semantic meaning of the
question and answer, it is crucial that the check_meaning_preserved is effective. For topics requiring domain exper-
tise, this requires prompt engineering with a domain expert providing feedback. This is one of the key human bottlenecks in
tuning the prompts in this system.

Other sources of MCQ invalidation While the check_meaning_preserved function checks that the question and
answer is correct, an additional risk is that the rewrite introduces distractors that are more correct than the target answer. In
our manual review evaluations (we reviewed all 1,061 MCQs), this was very rare. However, if this were a significant problem
in future systems, it may be addressable by tuning the rewriter bot, with an expert human evaluator in the prompt engineering
loop.

Extending RefineBot beyond language shortcuts We constructed RefineBot specifically to address the issue of language
shortcuts – where the question is answerable without using the image. This is appropriate because we work with vision-
centric VQA, meaning the questions should require image interpretation. However, the framework should work in other
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settings – namely language-only QA. This would require adjusting the prompts slightly. For example, the current reflection
prompt asks how the question was successfully evaluated without using language; also the current rewriter prompt directs the
LLM to address language shortcuts in its rewrite. Therefore, adapting Refinebot to language-only MCQ should make these
prompts more general.

On the other hand, the method could also be updated for the more general VQA setting – to improve questions that
do not have language shortcuts, but are easy for some other reason. Here, the evaluator and reflector agents, which are
currently LLMs, could be switched for an MLLM, which also ingests the image (though this would be expensive for current
state-of-the-art models). We hypothesize that current MLLMs are so weak at image perception, that this is not necessary
for MicroVQA – that simply removing language shortcuts will suffice for creating a challenging benchmark. As MLLMs
improve at perceiving microscopy images, this general VQA RefineBot could become more useful for ensuring that the
benchmark remains challenging.

Repeated RefineBot iterations A single run of RefineBot may exit as a FAIL, either because the rewrite changed the
meaning of the question, or because the maximum number of iterations was reached. However, RefineBot can give very
different outputs when changing the random seed, and we find that simply running again with a different random seed can
lead to a successful run. Therefore, if the bot fails, we rerun it.

If an MCQ exited RefineBot successfully, then the evaluator LLM was fooled by the question (got the answer incorrect).
Yet, the question could still be suboptimal in detectable ways: the LLM could be capable of narrowing the MCQ down to
two options, but have guessed the wrong option; moreover, this question could be easier for different models. To ensure it is
difficult enough overall, we require that the MCQ is answered incorrectly for two random seeds from two different models:
gpt-4o-2024-08-06 and claude-3-5-sonnet-20241022. If not, then it fails, and we run the RefineBot again
with a different random seed.

We discuss in the experiments Sec. 5.1 how this process leads to a small evaluation bias against the models used as
evaluators. That section shows that despite the bias, this process makes the MCQs generally harder for all models. Future
versions of RefineBot could mitigate this by including a larger family of evaluator models.

Finally, some MCQs fail to pass the RefineBot check. In these cases, we simply keep the stage 1 MCQ.

E.5. Final MCQ quality check

Since the MCQ generation process involves LLM generation, we need to verify the correctness of the final answer. Each
MCQ is manually reviewed by the same expert who created that particular question (between 80 and 120 per person). For
any question with issues, that expert makes minimal changes to the question to make it correct.

E.6. MCQ generation results: stage 1 exam alignment

The Stage 1 pipeline produced one-best-answer MCQs that preserved the content, testing focus, and validity of the expert-
generated question-answer pairs. It generated an initial set of distractors following best practices outlined in educational and
NBME guidelines. A key design goal of Stage 1 was to preserve the original question content without altering or introducing
new information. Secondary objectives included ensuring proper formatting according to NBME guidelines and minimizing
information that might provide clues to the correct answer without reference to the image.

While the pipeline ensured alignment with these goals, preserving the original content occasionally resulted in MCQs
containing extra information, such as image descriptions or specific biological terms (i.e., gene or protein name), that could
inadvertently help narrow the options. For example, stage 1 question stems sometimes included protein names, disease
descriptions, or descriptions of image features, which could reduce the challenge. Figure 10 illustrates Stage 1 outputs that
are appropriately formatted but may preserve details from the original input, making questions less challenging. While the
distractors were biologically plausible, some options were overly easy to eliminate, reducing the challenge. These limitations
are addressed and refined in Stage 2.

The o1-mini-2024-09-12 LLM judge, employed during DSPy optimization, compared the Stage 1 MCQs to the
original inputs to evaluate (1) semantic similarity and (2) adherence to MCQ formatting. The results showed that 96%
of questions preserved the original meaning, and 100% adhered to NBME formatting guidelines. Manual analysis of the
4% labeled as at least partially dissimilar revealed that these cases typically involved open-ended original questions being
reformulated into closed-ended MCQs. This transformation, a necessary step for creating one-best-answer MCQs, was not a
failure but rather an expected outcome of Stage 1. In rare instances where the original submission included multiple correct
answers, the output of Stage 1 retained one correct answer and excluded others to comply with the one-best-answer format.
The LLM judge flagged these cases as partially dissimilar but these changes were essential for adhering to the MCQ structure.
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A common issue in MCQ design is that correct answers tend to be longer and more detailed than distractors. To assess
this, we computed the ratio of tokens in incorrect options to those in the correct answer, where values ≤ 1 indicate longer
correct answers, and values ≥ 1 suggest shorter correct answers. Stage 1 MCQs showed a ratio of 0.87, indicating that correct
answers were only slightly longer than distractors. By comparison, naive MCQ generation yielded a ratio of 0.46, meaning
correct answers were nearly twice as long as distractors, making them easier to identify. Additionally, naive MCQ generation
preserved the original meaning in only 89% of cases and met NBME formatting guidelines in just 70%, highlighting the
efficacy of the Stage 1 process at preserving information and ensuring proper MCQ formatting.

E.7. MCQ generation results: stage 2 RefineBot

Question:
In an electron microscopy image of a neuron expressing 
human mHTT (BACHD) protein, distinct, spherical 
features are prominent and seem to be atypical. What is 
the most probable explanation for these features?

A) Concentration of cellular waste products leading to 
distinct morphological anomalies
B) Formation of air bubbles introduced during sample 
immobilization processes
C) Ice contamination from liquid nitrogen during sample 
preparation
D) Inclusion bodies formed by aggregated proteins
expressing during stress response
E) Cellular morphological changes during mitotic 
division
Correct answer: C

Question:
In an electron microscopy image of a mouse primary 
embryonic cortical neuron expressing full-length human 
mHTT (BACHD), "eye-ball" shaped features are observed 
in the top left corner that appear anomalous. What is the 
most likely cause of these features?

A) Aggregation of human mHTT protein within the neuron,
B) Ice contamination from liquid nitrogen during sample 
preparation
C) Formation of intracellular vesicles during neuron 
development
D) Artifacts arising from excessive heavy metal staining
Correct answer: B

MCQ stage 1 MCQ stage 2

Also involves sample 
processing, correct 

answer stands-out less

Very specific 
wording

Plausible spherical 
structure

Plausible spherical structure

Wording maintains 
meaning while relating 

to distractors

Image

Question:
In a confocal microscopy image that displays an 
immortalized line of epithelial cells tagged with a 
fluorescent protein, one cell is notably larger than its 
neighbors and contains multiple nuclei. Considering 
possible observations, what could be the leading cause 
of multinucleation in this scenario?

A) Enhanced nuclear division without cytokinesis 
completion during cell replication
B) Cellular response to an excessive nutrient-rich 
environment
C) Abnormal chromosomal segregation during meiosis
D) The accidental integration of another distinct cell line 
into the culture
E) Natural behavior in certain transformed eukaryotic 
cells
Correct answer: E

Question:
In a confocal microscopy image of HEK293T cells, the 
gene PSMB7 is endogenously tagged with GFP. One cell 
appears significantly larger than the others and contains 
multiple nuclei. What is the most likely reason for the 
presence of multi-nucleated cells in this culture?

A) Increased rates of apoptosis in the culture
B) Cell fusion events leading to multinucleation
C) Normal occurrence in immortalized cell lines
D) Contamination with another cell type

Correct answer: C

MCQ stage 1 MCQ stage 2Image

Easy to rule-out: unconnected to question

Gives away 
image specifics

More general 
wording preserves 

content

Relate better to question

Question:
Microscopy images of eukaryotic cells stained for nuclei 
(blue), cytoskeleton (red), and a nuclear-associated 
protein (green) show areas with unclear nuclear 
boundaries and faint cytoskeletal signals. The cells 
appear more compressed than anticipated. What might 
be the most plausible cause for this observation?

A) Inadequate washing leading to excess dye retention
B) Slight misalignment of the optical components 
causing image distortion
C) Improper focal settings creating unfocused regions
D) Irregular light source intensity impacting image clarity
E) Low temperature causing cellular contraction 
affecting image details

Correct answer: C

Question:
Confocal microscopy images of U2OS cells were prepared 
by staining nuclei with DAPI (blue), microtubules with an α-
tubulin antibody (red), and the protein TREX1 with a green 
antibody. In one of the images, the cells in the upper and 
lower parts appear to have blurred nuclei and partially 
visible microtubules, making the cells look smaller than 
expected. What is the most likely reason for this 
observation?

A) Overfixation of cells leading to excessive cross-linking
B) Underexposure during image acquisition causing 
insufficient signal
C) Out-of-focus sections resulting in blurred cellular 
structures
D) Non-specific antibody binding causing background 
fluorescence
Correct answer: C

MCQ stage 1 MCQ stage 2Image

Hard distractor: links question 
and image contentEasy to rule-out: unrelated to 

the question

Gives away image 
modality

Maintains key 
information

Figure 10. Examples of changes to questions and options between stage 1 and stage 2 (RefineBot) of our MCQ generation method. In red
elements that need to be improved and in green improvements.

The second stage of our MCQ generation method focuses on increasing the difficulty of the questions and options. In
Fig. 4, we illustrate the transformation of a question at each stage, highlighting issues and corresponding improvements.
While stage 1 produces exam-style questions that preserve the QA objective, the wording of the questions and distractors
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often enable MLLMs to exploit shortcuts rather than demonstrate knowledge. To address this, stage 2 (RefineBot) employs
a chain-of-thought process. We analyze additional examples of improvements achieved in stage 2, showing how RefineBot
improves both the style and content. Key strategies include:

1. Overly precise wording in the question stem: Precise phrasing can make it easy to identify the correct answer
through pattern matching. For example, Fig. 10 (top row), changing ‘eye-ball shaped’ to ‘spherical’ retains the
question’s intent while creating more challenging distractors referencing plausible alternative processes.

2. Over-description of the image eliminates the need for image interpretation. For example, in Fig. 10 (middle row),
stage 1 includes details that reveal the specifics of the image, allowing the model to propose common issues
without analyzing the image. Stage 2 replaces these specifics with general terms in the question stem.

3. Distractors unrelated to the specifics of the scenario described by the question. In Fig. 10 (bottom row), stage 2
increases distractor complexity by incorporating elements tied to the question’s context, making them less pre-
dictable.

F. Experiments details
F.1. Evaluation prompts

All prompts except for LLaVA and LLaVA-Med used the chain-of-thought prompt template from the MMMU-Pro code
[72]:

The following is a multiple choice question (with answers).
Think step by step and then output the answer in the format of \"The answer is (X)\" at the end.

{{QUESTION}}

Options:
{{CHOICES}}

An example complete question is:

The following is a multiple choice question (with answers).
Think step by step and then output the answer in the format of "The answer is (X)" at the end.

A fluorescence microscopy image displays cultured mouse primary neurons stained with a specific marker localized
to mitochondria. The fluorescence signal exhibits an uneven distribution across the neuronal cell, and there
is an absence of signal within the nucleus. What is the most probable cause for the uneven distribution of

the mitochondrial signal?

Options:
(1): Mitochondrial transport along axonal and dendritic processes ensures uneven distribution based on cellular

energy demands.
(2): Differential expression of mitochondrial proteins leads to variable fluorescence signal across the neuron.
(3): Mitochondrial biogenesis occurs at specific neuronal regions, causing localized fluorescence accumulation.
(4): Mitochondrial anchoring to the cytoskeleton restricts their movement, resulting in uneven distribution.
(5): Mitochondrial dynamics, including fission and fusion, allow mitochondria to move and distribute throughout

the neuron.

The answer is then extracted with the regex pattern: answer is \(?([0-9])\)?.
For LLaVA-Med, we added an extra parsing strategy. This was because we observed that while LLaVA-Med often gave

reasonable responses to questions, it failed to follow instructions well. First, it did not follow the CoT prompt consistently
to think step by step. It also didn’t use the right answer formatting: "The answer is (X)\". Since we were
more interested in biomedical reasoning adhering to VQA formatting, we decided to handle this model differently.

Specifically, to encourage CoT reasoning, we fixed the prefix of the response to:
Response: Let’s think through this step by step and evaluate each option..

Then we added a suffix to the end:
After carefully considering all the options, the most likely answer is (,

Then we continued generation, and did regular regex parsing to get the final answer.

F.2. Model details

Our main benchmarking experiments in Tab. 3 refer to models that have multiple versions. The exact model versions used
for inference are shown in Tab. 6
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Model Name API Endpoint Source & Details
GPT-4o gpt-4o-2024-08-06 OpenAI API
GPT-4o-mini gpt-4o-mini-2024-07-18 OpenAI API
Claude-3.5-sonnet antrophic/claude-3-5-sonnet OpenRouter API (Nov 12)

Equiv: claude-3-5-sonnet-20241022 on Anthropic API
Claude-3-Haiku antrhopic/claude-3-haiku OpenRouter API (Nov 12)

Equiv: claude-3-haiku-20240307 on Anthropic API
Gemini-1.5-Pro google/gemini-pro-1.5 OpenRouter API (Nov 12)
Gemini-1.5-Flash-8B google/gemini-flash-1.5-8b OpenRouter API (Nov 12)
VILA1.5-40B Efficient-Large-Model/VILA1.5-40b HuggingFace (Nov 12), Local inference
VILA1.5-13B Efficient-Large-Model/VILA1.5-13b HuggingFace (Nov 12), Local inference
Qwen2-VL-72B Qwen/Qwen2-VL-72B-Instruct Hyperbolic API (Nov 12)
Qwen2-VL-7B Qwen/Qwen2-VL-7B-Instruct Hyperbolic API (Nov 12)
Llama 3.2 90B meta-llama/llama-3.2-90b-vision-instruct OpenRouter API (Nov 12)
Llama 3.2 11B meta-llama/llama-3.2-11b-vision-instruct OpenRouter API (Nov 12)
Pixtral 12B mistralai/pixtral-12b OpenRouter API (Nov 12)
LLaVA-Med-Mistral-7B microsoft/llava-med-v1.5-mistral-7b HuggingFace (Nov 12), Local inference
LLaVA-Mistral-7B liuhaotian/llava-v1.6-mistral-7b HuggingFace (Nov 12), Local inference

Table 6. AI model API endpoints and their sources

For LLaVA and LLaVA-med, although the version number 1.6 is different from LLaVA-Med with 1.5, we do believe that
LLaVA-Med was either trained from this LLaVA version, or from one that is very similar. They have identical architecture,
and the version is very close; it is possible the LLaVA-Med copied the number incorrectly. The LLaVA-Med codebase or
github issues does not clarify this at the time of writing.

Note that for OpenRouter function calls to Anthropic, the date is not included in the string. We believe they use timestamps
for older model versions, but not for the latest version. So reproducing it may require checking if the model has been updated.

F.3. More experiments on attribute-level information

Models

Gemini-1.5-Pro

VILA1.5-40B

LlaVA-Med-Mistral-7B

Accuracy

Electron 
microscopy

Fluorescence 
microscopy

Light 
microscopy

Figure 11. Performance by image modality type for the best models: Gemini-1.5-Pro (closed source), VILA1.5-40B (open-source), and
LlaVA-Med-Mistral-7B (medical).

We described our metadata features in Sec. 3, and we can now leverage them to benchmark models on different attributes.
Fig. 5 (left) shows all sub-tasks, and shows that ‘compare image sets’, which is common in biology to compare ‘treatment’
and ‘control’ groups. All models perform relatively well, despite multi-image reasoning being understudied in MLLMs [64].
Fig. 5 (right) shows that for Gemini and LLaVa-Med, higher Bloom’s levels – corresponding to more advanced reasoning
– leads to worse performance. This supports the intuitive result that higher-level reasoning is more challenging – although
VILA does not follow this trend. A final result in Fig. 11 shows that all models performed worse on cryo-electron microscopy
images than brightfield or fluorescence microscopy. This may be due to cryo-EM’s challenging features (low contrast, low
signal-to-noise ratio) and their under-representation in pretraining datasets [77].
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F.4. Error analysis

F.4.1 Perception errors

Figure 12
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Figure 13
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Figure 14
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Figure 15
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Figure 16
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F.4.2 Knowledge errors

Figure 17
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Figure 18
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Figure 19
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Figure 20
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F.4.3 Overgeneralization or oversimplification errors

Figure 21
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Figure 22
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F.4.4 Hallucination or errors due to added details

Figure 23
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Figure 24. Collage of images from MicroVQA.
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